131 research outputs found

    Long-term Tracking in the Wild: A Benchmark

    Full text link
    We introduce the OxUvA dataset and benchmark for evaluating single-object tracking algorithms. Benchmarks have enabled great strides in the field of object tracking by defining standardized evaluations on large sets of diverse videos. However, these works have focused exclusively on sequences that are just tens of seconds in length and in which the target is always visible. Consequently, most researchers have designed methods tailored to this "short-term" scenario, which is poorly representative of practitioners' needs. Aiming to address this disparity, we compile a long-term, large-scale tracking dataset of sequences with average length greater than two minutes and with frequent target object disappearance. The OxUvA dataset is much larger than the object tracking datasets of recent years: it comprises 366 sequences spanning 14 hours of video. We assess the performance of several algorithms, considering both the ability to locate the target and to determine whether it is present or absent. Our goal is to offer the community a large and diverse benchmark to enable the design and evaluation of tracking methods ready to be used "in the wild". The project website is http://oxuva.netComment: To appear at ECCV 201

    Measuring the Accuracy of Object Detectors and Trackers

    Full text link
    The accuracy of object detectors and trackers is most commonly evaluated by the Intersection over Union (IoU) criterion. To date, most approaches are restricted to axis-aligned or oriented boxes and, as a consequence, many datasets are only labeled with boxes. Nevertheless, axis-aligned or oriented boxes cannot accurately capture an object's shape. To address this, a number of densely segmented datasets has started to emerge in both the object detection and the object tracking communities. However, evaluating the accuracy of object detectors and trackers that are restricted to boxes on densely segmented data is not straightforward. To close this gap, we introduce the relative Intersection over Union (rIoU) accuracy measure. The measure normalizes the IoU with the optimal box for the segmentation to generate an accuracy measure that ranges between 0 and 1 and allows a more precise measurement of accuracies. Furthermore, it enables an efficient and easy way to understand scenes and the strengths and weaknesses of an object detection or tracking approach. We display how the new measure can be efficiently calculated and present an easy-to-use evaluation framework. The framework is tested on the DAVIS and the VOT2016 segmentations and has been made available to the community.Comment: 10 pages, 7 Figure

    Graph-based topic models for trajectory clustering in crowd videos

    Get PDF
    Probabilistic topic modelings, such as latent Dirichlet allocation (LDA) and correlated topic models (CTM), have recently emerged as powerful statistical tools for processing video content. They share an important property, i.e., using a common set of topics to model all data. However such property can be too restrictive for modeling complex visual data such as crowd scenes where multiple fields of heterogeneous data jointly provide rich information about objects and events. This paper proposes graph-based extensions of LDA and CTM, referred to as GLDA and GCTM, to learn and analyze motion patterns by trajectory clustering in a highly cluttered and crowded environment. Unlike previous works that relied on a scene prior, we apply a spatio-temporal graph (STG) to uncover the spatial and temporal coherence between the trajectories of crowd motion during the learning process. The presented models advance the conventional approaches by integrating a manifold-based clustering as initialization and iterative statistical inference as optimization. The output of GLDA and GCTM are mid-level features that represent the motion patterns used later to generate trajectory clusters. Experiments on three different datasets show the effectiveness of the approaches in trajectory clustering and crowd motion modeling

    SHIRAZ: an automated histology image annotation system for zebrafish phenomics

    Get PDF
    Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish
    • …
    corecore